Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Hum Genet ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2253915

ABSTRACT

Rapid advancements of genome sequencing (GS) technologies have enhanced our understanding of the relationship between genes and human disease. To incorporate genomic information into the practice of medicine, new processes for the analysis, reporting, and communication of GS data are needed. Blood samples were collected from adults with a PCR-confirmed SARS-CoV-2 (COVID-19) diagnosis (target N = 1500). GS was performed. Data were filtered and analyzed using custom pipelines and gene panels. We developed unique patient-facing materials, including an online intake survey, group counseling presentation, and consultation letters in addition to a comprehensive GS report. The final report includes results generated from GS data: (1) monogenic disease risks; (2) carrier status; (3) pharmacogenomic variants; (4) polygenic risk scores for common conditions; (5) HLA genotype; (6) genetic ancestry; (7) blood group; and, (8) COVID-19 viral lineage. Participants complete pre-test genetic counseling and confirm preferences for secondary findings before receiving results. Counseling and referrals are initiated for clinically significant findings. We developed a genetic counseling, reporting, and return of results framework that integrates GS information across multiple areas of human health, presenting possibilities for the clinical application of comprehensive GS data in healthy individuals.

3.
BMJ Open ; 11(9): e052842, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1448019

ABSTRACT

INTRODUCTION: There is considerable variability in symptoms and severity of COVID-19 among patients infected by the SARS-CoV-2 virus. Linking host and virus genome sequence information to antibody response and biological information may identify patient or viral characteristics associated with poor and favourable outcomes. This study aims to (1) identify characteristics of the antibody response that result in maintained immune response and better outcomes, (2) determine the impact of genetic differences on infection severity and immune response, (3) determine the impact of viral lineage on antibody response and patient outcomes and (4) evaluate patient-reported outcomes of receiving host genome, antibody and viral lineage results. METHODS AND ANALYSIS: A prospective, observational cohort study is being conducted among adult patients with COVID-19 in the Greater Toronto Area. Blood samples are collected at baseline (during infection) and 1, 6 and 12 months after diagnosis. Serial antibody titres, isotype, antigen target and viral neutralisation will be assessed. Clinical data will be collected from chart reviews and patient surveys. Host genomes and T-cell and B-cell receptors will be sequenced. Viral genomes will be sequenced to identify viral lineage. Regression models will be used to test associations between antibody response, physiological response, genetic markers and patient outcomes. Pathogenic genomic variants related to disease severity, or negative outcomes will be identified and genome wide association will be conducted. Immune repertoire diversity during infection will be correlated with severity of COVID-19 symptoms and human leucocyte antigen-type associated with SARS-CoV-2 infection. Participants can learn their genome sequencing, antibody and viral sequencing results; patient-reported outcomes of receiving this information will be assessed through surveys and qualitative interviews. ETHICS AND DISSEMINATION: This study was approved by Clinical Trials Ontario Streamlined Ethics Review System (CTO Project ID: 3302) and the research ethics boards at participating hospitals. Study findings will be disseminated through peer-reviewed publications, conference presentations and end-users.


Subject(s)
COVID-19 , Genome-Wide Association Study , Humans , Observational Studies as Topic , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
4.
Clin Biochem ; 95: 1-12, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1242901

ABSTRACT

OBJECTIVES: A consensus guidance is provided for testing, utility and verification of SARS-CoV-2 point-of-care test (POCT) performance and implementation of a quality management program, focusing on nucleic acid and antigen targeted technologies. DESIGN AND METHODS: The recommendations are based on current literature and expert opinion from the members of Canadian Society of Clinical Chemists (CSCC), and are intended for use inside or outside of healthcare settings that have varied levels of expertise and experience with POCT. RESULTS AND CONCLUSIONS: Here we discuss sampling requirements, biosafety, SARS-CoV-2 point-of-care testing methodologies (with focus on Health Canada approved tests), test performance and limitations, test selection, testing utility, development and implementation of quality management systems, quality improvement, and medical and scientific oversight.


Subject(s)
COVID-19/diagnosis , Consensus , Point-of-Care Testing/standards , Practice Guidelines as Topic/standards , SARS-CoV-2/isolation & purification , Societies, Scientific/standards , COVID-19/epidemiology , COVID-19/genetics , Canada/epidemiology , Humans , Qualitative Research , Quality Improvement/standards , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL